TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74HC4060AP,TC74HC4060AF

14-Stage Binary Counter/Oscillator

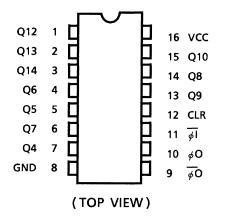
The TC74HC4060A is a high speed CMOS 14-STAGE BINARY COUNTER fabricated with silicon gate C²MOS technology.

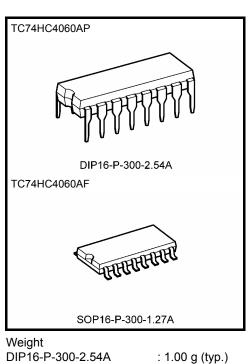
It achieves the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

The oscillator configuration allows designs using either RC or crystal oscillator circuits, or an external clock may be used.

The clear input resets the counter to a low level on all outputs and disables the oscillator.

A high CLR accomplishes this reset function.

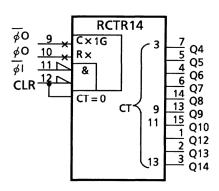

A negative transition on the clock input (ϕ I) increments the counter Ten levels of divided output are provided; 4 stage thru 10 stage and 12 stage thru 14 stage. At the last stage (Q14), a 1/16384 divided frequency is obtained.


The $\overline{\phi}$ I input and CLR input are equipped with protection circuits against static discharge or transient excess voltage.

Features

- High speed: $f_{max} = 58 \text{ MHz}$ (typ.) at $V_{CC} = 5 \text{ V}$
- Low power dissipation: $I_{CC} = 4 \mu A (max)$ at $Ta = 25^{\circ}C$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Output drive capability: 10 LSTTL loads
- Symmetrical output impedance: $|I_{OH}| = I_{OL} = 4 \text{ mA} (\text{min})$
- Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$
- Wide operating voltage range: V_{CC} (opr) = 2 to 6 V
- Oscillator configuration: RC or crystal oscillator
- Pin and function compatible with 4060B

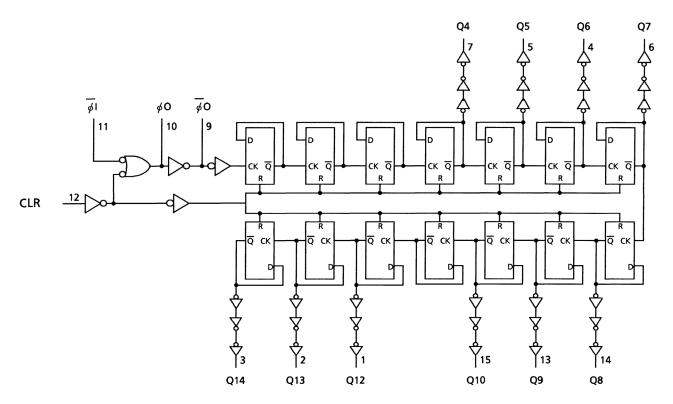
Pin Assignment



vveigni	
DIP16-P-300-2.54A	
SOP16-P-300-1.27A	

: 0.18 g (typ.)

TOSHIBA


IEC Logic Symbol

Truth Table

Inp	outs	Function				
φĪ	CLR	runction				
		Counter is reset to zero state.				
х	Н	φO output goes to high level.				
		$\overline{\phi}O$ output goes to low level.				
\neg	L	Count up one step.				
	L	No Change				

System Diagram

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	–0.5 to 7	V
DC input voltage	V _{IN}	-0.5 to V _{CC} + 0.5	V
DC output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5	V
Input diode current	I _{IK}	±20	mA
Output diode current	IOK	±20	mA
DC output current	IOUT	±25	mA
DC V _{CC} /ground current	ICC	±50	mA
Power dissipation	PD	500 (DIP) (Note 2)/180 (SOP)	mW
Storage temperature	T _{stg}	–65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: 500 mW in the range of Ta = -40 to 65° C. From Ta = 65 to 85° C a derating factor of -10 mW/°C shall be applied until 300 mW.

Characteristics	Symbol	Rating	Unit
Supply voltage	V _{CC}	2 to 6	V
Input voltage	V _{IN}	0 to V _{CC}	V
Output voltage	V _{OUT}	0 to V _{CC}	V
Operating temperature	T _{opr}	-40 to 85	°C
		0 to 1000 (V _{CC} = 2.0 V)	
Input rise and fall time	t _r , t _f	0 to 500 ($V_{CC} = 4.5 \text{ V}$)	ns
		0 to 400 ($V_{CC} = 6.0 \text{ V}$)	

Operating Range (Note)

Note: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

Electrical Characteristics

DC Characteristics

Characteristics	Symbol	Test Condition				Ta = 25°0	2	-	–40 to °C	Unit								
Characteristics	Cymbol			V _{CC} (V)	Min	Тур.	Max	Min	Max	Onit								
				2.0	1.50	_	_	1.50	—									
High-level input voltage	VIH		—	4.5	3.15		_	3.15	—	V								
Ĵ				6.0	4.20		—	4.20	—									
				2.0	—		0.50		0.50									
Low-level input voltage	VIL		_	4.5	—		1.35		1.35	V								
Ũ				6.0	—		1.80		1.80									
				2.0	1.9	2.0		1.9	—									
High-level output		VIN	I _{OH} = -20 μA	4.5	4.4	4.5	—	4.4	—									
voltage	V _{OH}	= V _{IH} or		6.0	5.9	6.0	_	5.9	—	V								
(Qn)		VIL	$I_{OH} = -4 \text{ mA}$	4.5	4.18	4.31	_	4.13	_									
			I _{OH} = -5.2 mA	6.0	5.68	5.80		5.63	—									
High-level output		V _{IN} = V _{IH} or	= V _{IH} or	= V _{IH} or		2.0	1.8	2.0		1.8	—							
voltage	V _{OH}				I _{OH} = -20 μA	4.5	4.0	4.5	—	4.0	—	V						
(∮ O, ∮ O)		VIL		6.0	5.5	5.9	—	5.5										
				2.0		0.0	0.1		0.1									
Low-level output		V _{IN} = V _{IH} or	= V _{IH} or	= VIH or	= VIH or	= V _{IH} or	= V _{IH} or		VIN	VIN	$I_{OL} = 20 \ \mu A$	4.5	—	0.0	0.1	—	0.1	
voltage	V _{OL}									6.0		0.0	0.1		0.1	V		
(Qn)		VIL	$I_{OL} = 4 \text{ mA}$	4.5	—	0.17	0.26		0.33									
			I _{OL} = 5.2 mA	6.0	—	0.18	0.26		0.33									
Low-level output		V _{IN}		2.0	—	0.0	0.2		0.2									
voltage	V _{OL}	VIN = VIH or VIL	$I_{OL} = 20 \ \mu A$	4.5	—	0.0	0.5		0.5	V								
(∳O, φ̄O)				6.0		0.1	0.5		0.5									
Input leakage current	I _{IN}	V _{IN} = V _{CC} or GND		6.0	_	_	±0.1	_	±1.0	μΑ								
Quiescent supply current	ICC	$V_{IN} = V_C$	_C or GND	6.0	_	_	4.0	_	40.0	μΑ								

Timing Requirements (input: $t_r = t_f = 6 \text{ ns}$)

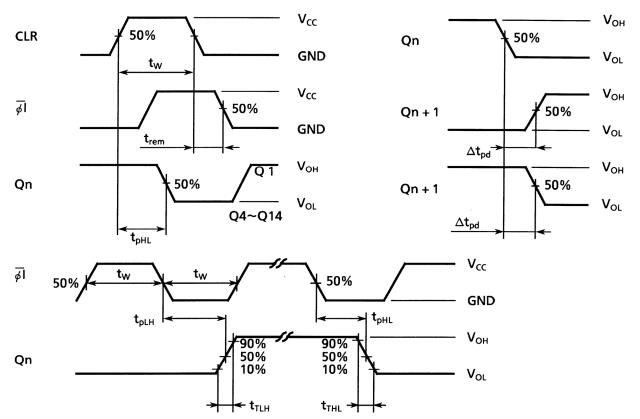
Characteristics	Symbol	Test Condition	Test Condition			Ta = -40 to 85°C	Unit
			V _{CC} (V)	Тур.	Limit	Limit	
Minimum nules width	t		2.0	_	75	95	
Minimum pulse width $(\overline{\phi}I)$	t _{W (L)}	—	4.5	—	15	19	ns
(φι)	tw (H)		6.0	—	13	16	
			2.0	_	75	95	
Minimum pulse time	t _{W (H)}	—	4.5	—	15	19	ns
(CLR)			6.0	_	13	16	
			2.0	_	100	125	
Minimum removal time	t _{rem}	—	4.5	—	20	25	ns
			6.0	—	17	21	
Clock frequency	f		2.0	_	6	5	
		—	4.5	—	30	24	MHz
			6.0	_	35	28	

AC Characteristics (C_L = 15 pF, V_{CC} = 5 V, Ta = 25°C, input: t_r = t_f = 6 ns)

Characteristics	Symbol	Test Condition		Тур.	Max	Unit
Output transition time	t _{тLH} t _{тнL}	_	_	4	8	ns
Propagation delay time (φl̄ -Q ₄)	t _{pLH} t _{pHL}	—	_	36	53	ns
Propagation delay time difference (Qn-Qn + 1)	∆t _{pd}	C _L = 15 pF (Qn, Qn + 1)	_	6	14	ns
Propagation delay time (CLR)	t _{pHL}	_	_	19	34	ns
Maximum clock frequency	f _{max}	—	33	58		MHz

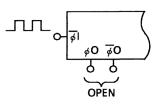
AC Characteristics ($C_L = 50 \text{ pF}$, input: $t_r = t_f = 6 \text{ ns}$)

Characteristics	Symbol	Test Condition		Ta = 25°C		Ta = - 85	Unit			
Onaracionatica Oymbol			V _{CC} (V)	Min	Тур.	Max	Min	Max	Onic	
	t		2.0	_	30	75	_	95		
Output transition time	t⊤∟H	—	4.5	—	8	15	_	19	ns	
	t⊤н∟		6.0	—	7	13	_	16		
Propagation delay	+		2.0	_	170	300	_	375		
time	t _{pLH}	—	4.5	—	41	60	—	75	ns	
(∳I -Q ₄)	t _{pHL}		6.0	—	30	51	_	64		
Propagation delay			2.0	_	32	75		95		
time difference	Δt_{pd}	$C_L = 50 \text{ pF} (Qn, Qn + 1)$	4.5	_	7	15		19	ns	
(Qn-Qn + 1)				6.0	—	5	13		16	
Propagation delay			2.0	_	85	195		245		
time	t _{pHL}	—	4.5	_	23	39		49	ns	
(CLR)			6.0	—	17	33	—	42		
			2.0	6	12		5			
Maximum clock frequency	f _{max}	—	4.5	30	50	_	24	_	MHz	
nequency			6.0	35	65	—	28			
Input capacitance	C _{IN}	—	•	_	5	10		10	pF	
Power dissipation capacitance	C _{PD}		(Note)		27		_	_	pF	

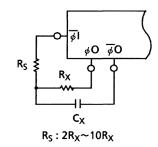

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 I_{CC} (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

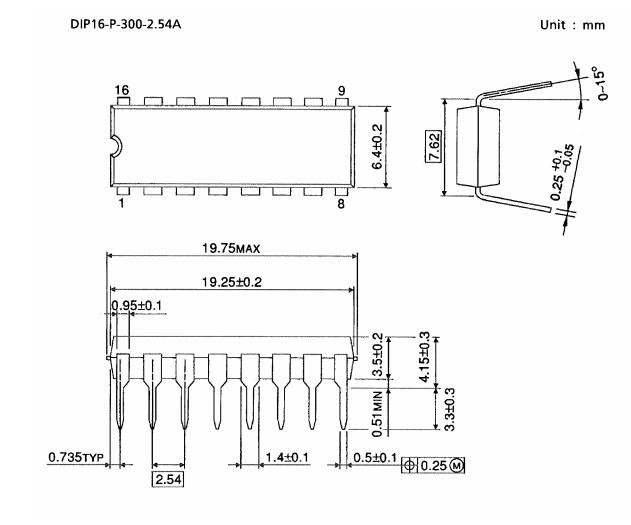

When CR or Crystal oscillation circuit is adopted, the dynamic power dissipation will be greater than the above calculation, because these oscillation circuits spend much supply current.

Switching Characteristics Test Waveform



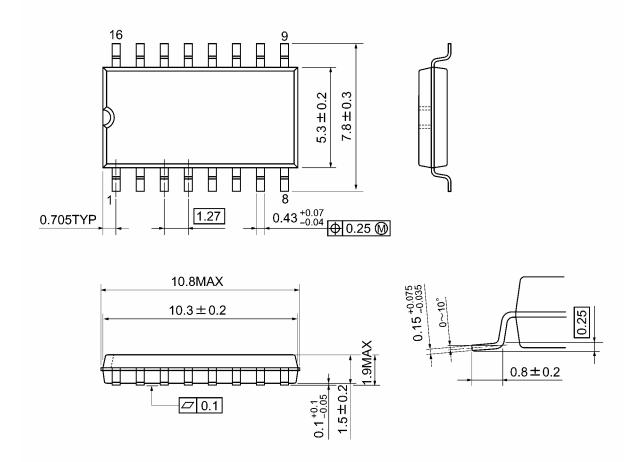
Typical Clock Drive Circuits

External Clock Drive


Typical RC Circuit

Typical Crystal Circuit

Package Dimensions


Weight: 1.00 g (typ.)

Package Dimensions

SOP16-P-300-1.27A

Unit: mm

Weight: 0.18 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN

• The information contained herein is subject to change without notice.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.